Libs/Optimize/Matrix/MixedEffectsShapeMatrix.h
Namespaces
Name |
---|
shapeworks User usage reporting (telemetry) |
Classes
Name | |
---|---|
class | shapeworks::MixedEffectsShapeMatrix |
Source code
/* Class for Mixed-effects regression */
#pragma once
#include "Libs/Optimize/Matrix/LegacyShapeMatrix.h"
#include "ParticleSystem.h"
#include "vnl/vnl_trace.h"
#include "vnl/vnl_vector.h"
namespace shapeworks {
class MixedEffectsShapeMatrix : public LegacyShapeMatrix {
public:
typedef double DataType;
typedef MixedEffectsShapeMatrix Self;
typedef LegacyShapeMatrix Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef itk::WeakPointer<const Self> ConstWeakPointer;
itkNewMacro(Self);
itkTypeMacro(MixedEffectsShapeMatrix, LegacyShapeMatrix);
void UpdateMeanMatrix() {
// for each sample
vnl_vector<double> tempvect;
tempvect.set_size(m_MeanMatrix.rows());
tempvect.fill(0.0);
for (unsigned int i = 0; i < m_MeanMatrix.cols(); i++) {
int group_indx = i / m_TimeptsPerIndividual;
tempvect = m_Intercept + m_Slope * m_Expl(i);
tempvect = tempvect + m_InterceptRand.get_row(group_indx);
tempvect = tempvect + m_SlopeRand.get_row(group_indx) * m_Expl(i);
// compute the mean
m_MeanMatrix.set_column(i, tempvect);
}
}
inline vnl_vector<double> ComputeMean(double k) const { return m_Intercept + m_Slope * k; }
void ResizeParameters(unsigned int n) {
vnl_vector<double> tmpA = m_Intercept; // copy existing matrix
vnl_vector<double> tmpB = m_Slope; // copy existing matrix
// Create new
m_Intercept.set_size(n);
m_Slope.set_size(n);
// Copy old data into new vector.
for (unsigned int r = 0; r < tmpA.size(); r++) {
m_Intercept(r) = tmpA(r);
m_Slope(r) = tmpB(r);
}
}
virtual void ResizeMeanMatrix(int rs, int cs) {
vnl_matrix<double> tmp = m_MeanMatrix; // copy existing matrix
// Create new column (shape)
m_MeanMatrix.set_size(rs, cs);
m_MeanMatrix.fill(0.0);
// Copy old data into new matrix.
for (unsigned int c = 0; c < tmp.cols(); c++) {
for (unsigned int r = 0; r < tmp.rows(); r++) {
m_MeanMatrix(r, c) = tmp(r, c);
}
}
}
void ResizeExplanatory(unsigned int n) {
if (n > m_Expl.size()) {
vnl_vector<double> tmp = m_Expl; // copy existing matrix
// Create new
m_Expl.set_size(n);
m_Expl.fill(0.0);
// Copy old data into new vector.
for (unsigned int r = 0; r < tmp.size(); r++) {
m_Expl(r) = tmp(r);
}
}
}
virtual void DomainAddEventCallback(Object*, const itk::EventObject& e) {
const ParticleDomainAddEvent& event = dynamic_cast<const ParticleDomainAddEvent&>(e);
unsigned int d = event.GetDomainIndex();
if (d % this->m_DomainsPerShape == 0) {
this->ResizeMatrix(this->rows(), this->cols() + 1);
this->ResizeMeanMatrix(this->rows(), this->cols() + 1);
this->ResizeExplanatory(this->cols());
}
}
virtual void PositionAddEventCallback(Object* o, const itk::EventObject& e) {
const int VDimension = 3;
const ParticlePositionAddEvent& event = dynamic_cast<const ParticlePositionAddEvent&>(e);
const ParticleSystem* ps = dynamic_cast<const ParticleSystem*>(o);
const int d = event.GetDomainIndex();
const unsigned int idx = event.GetPositionIndex();
const typename ParticleSystem::PointType pos = ps->GetTransformedPosition(idx, d);
const unsigned int PointsPerDomain = ps->GetNumberOfParticles(d);
// Make sure we have enough rows.
if ((ps->GetNumberOfParticles(d) * VDimension * this->m_DomainsPerShape) > this->rows()) {
this->ResizeParameters(PointsPerDomain * VDimension * this->m_DomainsPerShape);
this->ResizeMatrix(PointsPerDomain * VDimension * this->m_DomainsPerShape, this->cols());
this->ResizeMeanMatrix(PointsPerDomain * VDimension * this->m_DomainsPerShape, this->cols());
}
// CANNOT ADD POSITION INFO UNTIL ALL POINTS PER DOMAIN IS KNOWN
// Add position info to the matrix
unsigned int k = ((d % this->m_DomainsPerShape) * PointsPerDomain * VDimension) + (idx * VDimension);
for (unsigned int i = 0; i < VDimension; i++) {
this->operator()(i + k, d / this->m_DomainsPerShape) = pos[i];
}
// std::cout << "Row " << k << " Col " << d / this->m_DomainsPerShape << " = " << pos << std::endl;
}
virtual void PositionSetEventCallback(Object* o, const itk::EventObject& e) {
const int VDimension = 3;
const ParticlePositionSetEvent& event = dynamic_cast<const ParticlePositionSetEvent&>(e);
const ParticleSystem* ps = dynamic_cast<const ParticleSystem*>(o);
const int d = event.GetDomainIndex();
const unsigned int idx = event.GetPositionIndex();
const typename ParticleSystem::PointType pos = ps->GetTransformedPosition(idx, d);
const unsigned int PointsPerDomain = ps->GetNumberOfParticles(d);
// Modify matrix info
// unsigned int k = VDimension * idx;
unsigned int k = ((d % this->m_DomainsPerShape) * PointsPerDomain * VDimension) + (idx * VDimension);
for (unsigned int i = 0; i < VDimension; i++) {
this->operator()(i + k, d / this->m_DomainsPerShape) = pos[i] - m_MeanMatrix(i + k, d / this->m_DomainsPerShape);
}
}
virtual void PositionRemoveEventCallback(Object*, const itk::EventObject&) {
// NEED TO IMPLEMENT THIS
}
void SetDomainsPerShape(int i) { this->m_DomainsPerShape = i; }
int GetDomainsPerShape() const { return this->m_DomainsPerShape; }
void SetTimeptsPerIndividual(int i) { this->m_TimeptsPerIndividual = i; }
int GetTimeptsPerIndividual() const { return this->m_TimeptsPerIndividual; }
void SetExplanatory(std::vector<double> v) {
// std::cout << "Setting expl " << std::endl;
ResizeExplanatory(v.size());
for (unsigned int i = 0; i < v.size(); i++) {
// std::cout << v[i] << std::endl;
m_Expl[i] = v[i];
}
}
void SetExplanatory(unsigned int i, double q) { m_Expl[i] = q; }
const double& GetExplanatory(unsigned int i) const { return m_Expl[i]; }
double& GetExplanatory(unsigned int i) { return m_Expl[i]; }
const vnl_vector<double>& GetSlope() const { return m_Slope; }
const vnl_vector<double>& GetIntercept() const { return m_Intercept; }
const vnl_matrix<double>& GetSlopeRandom() const { return m_SlopeRand; }
const vnl_matrix<double>& GetInterceptRandom() const { return m_InterceptRand; }
void SetSlope(const std::vector<double>& v) {
ResizeParameters(v.size());
for (unsigned int i = 0; i < v.size(); i++) {
m_Slope[i] = v[i];
}
}
void SetIntercept(const std::vector<double>& v) {
ResizeParameters(v.size());
for (unsigned int i = 0; i < v.size(); i++) {
m_Intercept[i] = v[i];
}
}
void EstimateParameters() {
// std::cout << "Estimating params" << std::endl;
// std::cout << "Explanatory: " << m_Expl << std::endl;
vnl_matrix<double> X = *this + m_MeanMatrix;
// Number of samples
int num_shapes = static_cast<double>(X.cols());
this->m_NumIndividuals = num_shapes / this->GetTimeptsPerIndividual();
int nr = X.rows(); // number of points*3
// set the sizes of random slope and intercept matrix
m_SlopeRand.set_size(m_NumIndividuals, nr); // num_groups X num_points*3
m_InterceptRand.set_size(m_NumIndividuals, nr); // num_groups X num_points*3
vnl_matrix<double> fixed; // slopes + intercepts for all points
vnl_matrix<double> random; // slopes + intercepts for all groups, for all points
fixed.set_size(2, nr);
random.set_size(2, nr * m_NumIndividuals);
vnl_matrix<double> Ds(2, 2); // covariance matrix of random parameters (2x2)
Ds.set_identity(); // initialize to identity
double sigma2s = 1; // variance of error
vnl_matrix<double> identity_n;
identity_n.set_size(m_TimeptsPerIndividual, m_TimeptsPerIndividual);
identity_n.set_identity();
vnl_matrix<double> identity_2;
identity_2.set_size(2, 2);
identity_2.set_identity();
vnl_matrix<double>*Ws = NULL, *Vs = NULL;
Ws = new vnl_matrix<double>[m_NumIndividuals];
Vs = new vnl_matrix<double>[m_NumIndividuals];
for (int i = 0; i < m_NumIndividuals; i++) {
Vs[i].set_size(m_TimeptsPerIndividual, m_TimeptsPerIndividual);
Ws[i].set_size(m_TimeptsPerIndividual, m_TimeptsPerIndividual);
}
vnl_matrix<double> sum_mat1(2, 2, 0);
vnl_vector<double> sum_mat2(2);
sum_mat2.fill(0.0);
vnl_vector<double> residual;
residual.set_size(m_TimeptsPerIndividual);
residual.fill(0.0);
double ecorr = 0.0;
double tracevar = 0.0;
vnl_matrix<double> bscorr(2, 2, 0.0);
vnl_matrix<double> bsvar(2, 2, 0.0);
vnl_matrix<double> Xp;
Xp.set_size(m_TimeptsPerIndividual, 2);
vnl_vector<double> y;
y.set_size(m_TimeptsPerIndividual);
vnl_vector<double> tempvect;
tempvect.set_size(2);
for (int i = 0; i < nr; i++) // for all points (x,y,z coordinates)
{
sigma2s = 1.0;
Ds.set_identity();
for (int j = 0; j < 50; j++) // EM iterations
{
sum_mat1.fill(0.0);
sum_mat2.fill(0.0);
residual.fill(0.0);
ecorr = 0.0;
tracevar = 0.0;
bscorr.fill(0.0);
bsvar.fill(0.0);
for (int k = 0; k < m_NumIndividuals; k++) {
for (int l = 0; l < m_TimeptsPerIndividual; l++) {
Xp(l, 0) = m_Expl(k * m_TimeptsPerIndividual + l);
Xp(l, 1) = 1;
y(l) = X(i, k * m_TimeptsPerIndividual + l);
}
Vs[k] = (identity_n * sigma2s) + Xp * Ds * vnl_transpose(Xp);
// Ws = static_cast<vnl_matrix> (vnl_matrix_inverse<double>(Vs));
Ws[k] = vnl_inverse(Vs[k]);
sum_mat1 = sum_mat1 + vnl_transpose(Xp) * Ws[k] * Xp;
sum_mat2 = sum_mat2 + vnl_transpose(Xp) * Ws[k] * y;
}
tempvect = vnl_inverse(sum_mat1) * sum_mat2;
fixed.set_column(i, tempvect);
for (int k = 0; k < m_NumIndividuals; k++) {
for (int l = 0; l < m_TimeptsPerIndividual; l++) {
Xp(l, 0) = m_Expl(k * m_TimeptsPerIndividual + l);
Xp(l, 1) = 1;
y(l) = X(i, k * m_TimeptsPerIndividual + l);
}
tempvect = Ds * vnl_transpose(Xp) * Ws[k] * (y - (Xp * fixed.get_column(i)));
random.set_column(i * m_NumIndividuals + k, tempvect);
residual = y - (Xp * fixed.get_column(i)) - (Xp * random.get_column(i * m_NumIndividuals + k));
ecorr = ecorr + dot_product(residual, residual);
tracevar = tracevar + (m_TimeptsPerIndividual - sigma2s * vnl_trace(Ws[k]));
bscorr = bscorr + outer_product(random.get_column(i * m_NumIndividuals + k),
random.get_column(i * m_NumIndividuals + k));
bsvar = bsvar + (identity_2 - (vnl_transpose(Xp) * Ws[k] * Xp * Ds));
}
sigma2s = (ecorr + sigma2s * tracevar) / (num_shapes);
Ds = (bscorr + Ds * bsvar) / m_NumIndividuals;
} // endfor EM iterations
// printf ("point #%d\n", i);
} // endfor all points on shape (x,y & z)
m_Slope = fixed.get_row(0);
m_Intercept = fixed.get_row(1);
for (int i = 0; i < m_NumIndividuals; i++) {
for (int j = 0; j < nr; j++) // for all points * 3
{
m_SlopeRand(i, j) = random(0, j * m_NumIndividuals + i);
m_InterceptRand(i, j) = random(1, j * m_NumIndividuals + i);
}
}
delete[] Vs;
delete[] Ws;
// printf ("points:\n");
// for (int k = 0; k < m_NumIndividuals; k++)
// for (int l = 0; l < m_TimeptsPerIndividual; l++)
// printf ("%g %g\n", X(0,k*m_TimeptsPerIndividual + l), m_Expl(k*m_TimeptsPerIndividual + l));
// printf ("fixed: slope %g, intercept %g", m_Slope(0), m_Intercept(0));
// printf ("random: slopes %g %g, intercepts %g %g", m_SlopeRand(0,0), m_SlopeRand(1,0), m_InterceptRand(0,0),
// m_InterceptRand(1,0));
}
//
void Initialize() {
m_Intercept.fill(0.0);
m_Slope.fill(0.0);
m_MeanMatrix.fill(0.0);
m_SlopeRand.fill(0.0);
m_InterceptRand.fill(0.0);
}
virtual void BeforeIteration() {
m_UpdateCounter++;
if (m_UpdateCounter >= m_RegressionInterval) {
m_UpdateCounter = 0;
this->EstimateParameters();
this->UpdateMeanMatrix();
}
}
void SetRegressionInterval(int i) { m_RegressionInterval = i; }
int GetRegressionInterval() const { return m_RegressionInterval; }
protected:
MixedEffectsShapeMatrix() {
this->m_DefinedCallbacks.DomainAddEvent = true;
this->m_DefinedCallbacks.PositionAddEvent = true;
this->m_DefinedCallbacks.PositionSetEvent = true;
this->m_DefinedCallbacks.PositionRemoveEvent = true;
m_UpdateCounter = 0;
m_RegressionInterval = 1;
m_NumIndividuals = 13;
m_TimeptsPerIndividual = 3;
}
virtual ~MixedEffectsShapeMatrix(){};
void PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); }
private:
MixedEffectsShapeMatrix(const Self&); // purposely not implemented
void operator=(const Self&); // purposely not implemented
int m_UpdateCounter;
int m_RegressionInterval;
// Parameters for the linear model
vnl_vector<double> m_Intercept;
vnl_vector<double> m_Slope;
// The explanatory variable value for each sample (matrix column)
vnl_vector<double> m_Expl;
// A matrix to store the mean estimated for each explanatory variable (each sample)
vnl_matrix<double> m_MeanMatrix;
vnl_matrix<double> m_InterceptRand; // added: AK , random intercepts for each group
vnl_matrix<double> m_SlopeRand; // added: AK , random slopes for each group
int m_NumIndividuals;
int m_TimeptsPerIndividual;
};
} // namespace shapeworks
Updated on 2024-11-11 at 19:51:46 +0000