Libs/Optimize/Function/DisentangledCorrespondenceFunction.h
Namespaces
Name |
---|
shapeworks User usage reporting (telemetry) |
Classes
Name | |
---|---|
class | shapeworks::DisentangledCorrespondenceFunction |
Source code
#pragma once
#include <vector>
#include "DisentangledCorrespondenceFunction.h"
#include "Libs/Optimize/Matrix/LegacyShapeMatrix.h"
#include "VectorFunction.h"
namespace shapeworks {
class DisentangledCorrespondenceFunction : public VectorFunction {
public:
constexpr static unsigned int VDimension = 3;
typedef DisentangledCorrespondenceFunction Self;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef VectorFunction Superclass;
itkTypeMacro(DisentangledCorrespondenceFunction, VectorFunction);
typedef LegacyShapeMatrix ShapeMatrixType;
typedef typename ShapeMatrixType::DataType DataType;
typedef typename Superclass::VectorType VectorType;
typedef typename ParticleSystem::PointType PointType;
typedef vnl_vector<DataType> vnl_vector_type;
typedef vnl_matrix<DataType> vnl_matrix_type;
typedef std::shared_ptr<std::vector<vnl_matrix_type>> shared_vnl_matrix_array_type;
itkNewMacro(Self);
itkStaticConstMacro(Dimension, unsigned int, VDimension);
virtual VectorType Evaluate(unsigned int, unsigned int, const ParticleSystem*, double&, double&) const;
virtual VectorType Evaluate(unsigned int a, unsigned int b, const ParticleSystem* c, double& d) const {
double e;
return this->Evaluate(a, b, c, d, e);
}
virtual double Energy(unsigned int a, unsigned int b, const ParticleSystem* c) const {
double e, d;
this->Evaluate(a, b, c, d, e);
return e;
}
void WriteModes(const std::string&, int) const;
void SetShapeMatrix(ShapeMatrixType* s) { m_ShapeMatrix = s; }
ShapeMatrixType* GetShapeMatrix() { return m_ShapeMatrix.GetPointer(); }
const ShapeMatrixType* GetShapeMatrix() const { return m_ShapeMatrix.GetPointer(); }
virtual void BeforeIteration() {
m_ShapeMatrix->BeforeIteration();
if (m_Counter == 0) {
this->ComputeCovarianceMatrices();
}
}
virtual void AfterIteration() {
m_ShapeMatrix->AfterIteration();
// Update the annealing parameter.
if (m_HoldMinimumVariance != true && !m_UseMeanEnergy) {
m_Counter++;
if (m_Counter >= m_RecomputeCovarianceInterval) {
m_Counter = 0;
m_MinimumVariance *= m_MinimumVarianceDecayConstant;
}
}
}
void SetMinimumVariance(double d) { m_MinimumVariance = d; }
double GetMinimumVariance() const { return m_MinimumVariance; }
void SetMinimumVarianceDecay(double initial_value, double final_value, double time_period) {
m_MinimumVarianceDecayConstant = exp(log(final_value / initial_value) / time_period);
m_MinimumVariance = initial_value;
m_HoldMinimumVariance = false;
}
bool GetMinimumVarianceDecayConstant() const { return m_MinimumVarianceDecayConstant; }
void PrintShapeMatrix() { m_ShapeMatrix->PrintMatrix(); }
void UseMeanEnergy() { m_UseMeanEnergy = true; }
void UseEntropy() { m_UseMeanEnergy = false; }
bool GetHoldMinimumVariance() const { return m_HoldMinimumVariance; }
void SetHoldMinimumVariance(bool b) { m_HoldMinimumVariance = b; }
void SetRecomputeCovarianceInterval(int i) { m_RecomputeCovarianceInterval = i; }
int GetRecomputeCovarianceInterval() const { return m_RecomputeCovarianceInterval; }
virtual VectorFunction::Pointer Clone() {
DisentangledCorrespondenceFunction::Pointer copy = DisentangledCorrespondenceFunction::New();
copy->m_Shape_PointsUpdate = this->m_Shape_PointsUpdate;
copy->m_Time_PointsUpdate = this->m_Time_PointsUpdate;
copy->m_MinimumVariance = this->m_MinimumVariance;
copy->m_MinimumEigenValue_shape_cohort = this->m_MinimumEigenValue_shape_cohort;
copy->m_MinimumEigenValue_time_cohort = this->m_MinimumEigenValue_time_cohort;
copy->m_CurrentEnergy = this->m_CurrentEnergy;
copy->m_HoldMinimumVariance = this->m_HoldMinimumVariance;
copy->m_MinimumVarianceDecayConstant = this->m_MinimumVarianceDecayConstant;
copy->m_RecomputeCovarianceInterval = this->m_RecomputeCovarianceInterval;
copy->m_Counter = m_Counter;
copy->m_DomainNumber = this->m_DomainNumber;
copy->m_ParticleSystem = this->m_ParticleSystem;
copy->m_ShapeMatrix = this->m_ShapeMatrix;
copy->m_InverseCovMatrices_time_cohort = this->m_InverseCovMatrices_time_cohort;
copy->m_InverseCovMatrices_shape_cohort = this->m_InverseCovMatrices_shape_cohort;
copy->m_points_mean_time_cohort = this->m_points_mean_time_cohort;
copy->m_points_mean_shape_cohort = this->m_points_mean_shape_cohort;
return (VectorFunction::Pointer)copy;
}
protected:
DisentangledCorrespondenceFunction() {
// m_MinimumVarianceBase = 1.0;//exp(log(1.0e-5)/10000.0);
m_HoldMinimumVariance = true;
m_MinimumVariance = 1.0e-5;
m_MinimumEigenValue = 0.0;
m_MinimumVarianceDecayConstant = 1.0; // log(2.0) / 50000.0;
m_RecomputeCovarianceInterval = 1;
m_Counter = 0;
m_UseMeanEnergy = true;
m_InverseCovMatrices_time_cohort = std::make_shared<std::vector<Eigen::MatrixXd>>();
m_InverseCovMatrices_shape_cohort = std::make_shared<std::vector<Eigen::MatrixXd>>();
m_points_mean_time_cohort = std::make_shared<std::vector<vnl_matrix_type>>();
m_points_mean_shape_cohort = std::make_shared<std::vector<vnl_matrix_type>>();
m_Time_PointsUpdate = std::make_shared<std::vector<vnl_matrix_type>>();
m_Shape_PointsUpdate = std::make_shared<std::vector<vnl_matrix_type>>();
}
virtual ~DisentangledCorrespondenceFunction() {}
void operator=(const DisentangledCorrespondenceFunction&);
DisentangledCorrespondenceFunction(const DisentangledCorrespondenceFunction&);
typename ShapeMatrixType::Pointer m_ShapeMatrix;
// Computes Covariance Matrices across time and shape domain and then generate gradient updates for them.
virtual void ComputeCovarianceMatrices();
// Initialize size and clear relevant variables from previous iteration, before gradient updates computation.
void Initialize(){
const unsigned int total_time_points = m_ShapeMatrix->GetDomainsPerShape();
int total_subjects = m_ShapeMatrix->cols();
m_points_mean_time_cohort->clear();
m_points_mean_shape_cohort->clear();
m_InverseCovMatrices_time_cohort->clear();
m_InverseCovMatrices_shape_cohort->clear();
m_Shape_PointsUpdate->clear();
m_Time_PointsUpdate->clear();
m_MinimumEigenValue_shape_cohort.resize(total_subjects, 0.0);
m_MinimumEigenValue_time_cohort.resize(total_time_points, 0.0);
for(int i = 0; i < total_time_points; ++i){
Eigen::MatrixXd temp_cov_matrix;
vnl_matrix_type temp_points_matrix;
vnl_matrix_type temp_mean_matrix;
m_InverseCovMatrices_time_cohort->push_back(temp_cov_matrix);
m_points_mean_time_cohort->push_back(temp_mean_matrix);
m_Time_PointsUpdate->push_back(temp_points_matrix);
}
for(int i = 0; i < total_subjects; ++i){
Eigen::MatrixXd temp_cov_matrix;
vnl_matrix_type temp_points_matrix;
vnl_matrix_type temp_mean_matrix;
m_InverseCovMatrices_shape_cohort->push_back(temp_cov_matrix);
m_points_mean_shape_cohort->push_back(temp_mean_matrix);
m_Shape_PointsUpdate->push_back(temp_points_matrix);
}
}
double m_MinimumVariance;
double m_MinimumEigenValue;
std::vector<double> m_MinimumEigenValue_time_cohort;
std::vector<double> m_MinimumEigenValue_shape_cohort;
double m_CurrentEnergy;
bool m_HoldMinimumVariance;
double m_MinimumVarianceDecayConstant;
int m_RecomputeCovarianceInterval;
int m_Counter;
bool m_UseMeanEnergy;
// Inverse Covariance matrices across time and shape cohort
std::shared_ptr<std::vector<Eigen::MatrixXd>> m_InverseCovMatrices_time_cohort; // T obj matrices each of dimensionality dM X N
std::shared_ptr<std::vector<Eigen::MatrixXd>> m_InverseCovMatrices_shape_cohort; // N obj matrices each of dimensionality dM X T
// mean vectors across time and shape cohort
shared_vnl_matrix_array_type m_points_mean_time_cohort; // T mean vectors each of dimension dM
shared_vnl_matrix_array_type m_points_mean_shape_cohort; // N mean vectors each of dimension dM
// Matrices for Gradient Updates across time and shape cohort
shared_vnl_matrix_array_type m_Time_PointsUpdate; // T update matrices each of dimensionality dM X N
shared_vnl_matrix_array_type m_Shape_PointsUpdate; // N update matrices each of dimensionality dM X T
};
} // namespace shapeworks
Updated on 2024-11-11 at 19:51:46 +0000