Libs/Optimize/Function/CorrespondenceFunction.h
Namespaces
Name |
---|
shapeworks User usage reporting (telemetry) |
Classes
Name | |
---|---|
class | shapeworks::CorrespondenceFunction Correspondence term. |
Source code
#pragma once
#include <cmath>
#include <numeric>
#include <vector>
#include "Libs/Optimize/Matrix/ShapeGradientMatrix.h"
#include "Libs/Optimize/Matrix/ShapeMatrix.h"
#include "VectorFunction.h"
namespace shapeworks {
class CorrespondenceFunction : public VectorFunction {
public:
constexpr static int VDimension = 3;
typedef CorrespondenceFunction Self;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef VectorFunction Superclass;
itkTypeMacro(CorrespondenceFunction, VectorFunction)
typedef shapeworks::ShapeMatrix ShapeDataType;
typedef shapeworks::ShapeGradientMatrix ShapeGradientType;
typedef ShapeDataType::DataType DataType;
typedef typename Superclass::VectorType VectorType;
typedef typename ParticleSystem::PointType PointType;
typedef vnl_vector<DataType> vnl_vector_type;
typedef vnl_matrix<DataType> vnl_matrix_type;
itkNewMacro(Self);
itkStaticConstMacro(Dimension, unsigned int, VDimension);
void SetShapeData(ShapeDataType* s) { m_ShapeData = s; }
ShapeDataType* GetShapeData() { return m_ShapeData.GetPointer(); }
const ShapeDataType* GetShapeData() const { return m_ShapeData.GetPointer(); }
void SetShapeGradient(ShapeGradientType* s) { m_ShapeGradient = s; }
ShapeGradientType* GetShapeGradient() { return m_ShapeGradient.GetPointer(); }
const ShapeGradientType* GetShapeGradient() const { return m_ShapeGradient.GetPointer(); }
virtual VectorType Evaluate(unsigned int, unsigned int, const ParticleSystem*, double&, double&) const;
virtual VectorType Evaluate(unsigned int a, unsigned int b, const ParticleSystem* c, double& d) const {
double e;
return this->Evaluate(a, b, c, d, e);
}
virtual double Energy(unsigned int a, unsigned int b, const ParticleSystem* c) const {
double e, d;
this->Evaluate(a, b, c, d, e);
return e;
}
virtual void BeforeIteration() { this->ComputeUpdates(this->m_ParticleSystem); }
virtual void AfterIteration() {
// Update the annealing parameter.
if (m_HoldMinimumVariance != true && !m_UseMeanEnergy) {
m_Counter++;
if (m_Counter >= m_RecomputeCovarianceInterval) {
m_Counter = 0;
m_MinimumVariance *= m_MinimumVarianceDecayConstant;
}
}
}
void SetMinimumVarianceDecay(double initial_value, double final_value, double time_period) {
m_MinimumVarianceDecayConstant = exp(log(final_value / initial_value) / time_period);
m_MinimumVariance = initial_value;
m_HoldMinimumVariance = false;
}
void SetMinimumVariance(double d) { m_MinimumVariance = d; }
double GetMinimumVariance() const { return m_MinimumVariance; }
bool GetHoldMinimumVariance() const { return m_HoldMinimumVariance; }
void SetHoldMinimumVariance(bool b) { m_HoldMinimumVariance = b; }
void SetRecomputeCovarianceInterval(int i) { m_RecomputeCovarianceInterval = i; }
int GetRecomputeCovarianceInterval() const { return m_RecomputeCovarianceInterval; }
void SetAttributeScales(const std::vector<double>& s) { m_AttributeScales = s; }
void SetDomainsPerShape(int i) { m_DomainsPerShape = i; }
int GetDomainsPerShape() const { return m_DomainsPerShape; }
void SetAttributesPerDomain(const std::vector<int>& i) { m_AttributesPerDomain = i; }
void UseMeanEnergy() { m_UseMeanEnergy = true; }
void UseEntropy() { m_UseMeanEnergy = false; }
void SetXYZ(int i, bool val) {
if (m_UseXYZ.size() != m_DomainsPerShape) m_UseXYZ.resize(m_DomainsPerShape);
m_UseXYZ[i] = val;
}
void SetNormals(int i, bool val) {
if (m_UseNormals.size() != m_DomainsPerShape) m_UseNormals.resize(m_DomainsPerShape);
m_UseNormals[i] = val;
}
bool CheckForNans(vnl_matrix_type mat) {
bool flag = false;
for (int i = 0; i < mat.rows(); i++) {
for (int j = 0; j < mat.cols(); j++) {
if (std::isnan(mat(i, j))) {
flag = true;
break;
}
}
}
return flag;
}
virtual VectorFunction::Pointer Clone() {
auto copy = CorrespondenceFunction::New();
// from itkParticleVectorFunction
copy->m_DomainNumber = this->m_DomainNumber;
copy->m_ParticleSystem = this->m_ParticleSystem;
// local
copy->m_AttributeScales = this->m_AttributeScales;
copy->m_Counter = this->m_Counter;
copy->m_CurrentEnergy = this->m_CurrentEnergy;
copy->m_HoldMinimumVariance = this->m_HoldMinimumVariance;
copy->m_MinimumEigenValue = this->m_MinimumEigenValue;
copy->m_MinimumVariance = this->m_MinimumVariance;
copy->m_MinimumVarianceDecayConstant = this->m_MinimumVarianceDecayConstant;
copy->m_PointsUpdate = this->m_PointsUpdate;
copy->m_RecomputeCovarianceInterval = this->m_RecomputeCovarianceInterval;
copy->m_AttributesPerDomain = this->m_AttributesPerDomain;
copy->m_DomainsPerShape = this->m_DomainsPerShape;
copy->m_UseMeanEnergy = this->m_UseMeanEnergy;
copy->m_points_mean = this->m_points_mean;
copy->m_UseNormals = this->m_UseNormals;
copy->m_UseXYZ = this->m_UseXYZ;
copy->m_InverseCovMatrix = this->m_InverseCovMatrix;
copy->m_ShapeData = this->m_ShapeData;
copy->m_ShapeGradient = this->m_ShapeGradient;
return (VectorFunction::Pointer)copy;
}
protected:
CorrespondenceFunction() {
// m_MinimumVarianceBase = 1.0;//exp(log(1.0e-5)/10000.0);
m_HoldMinimumVariance = true;
m_MinimumVariance = 1.0e-5;
m_MinimumEigenValue = 0.0;
m_MinimumVarianceDecayConstant = 1.0; // log(2.0) / 50000.0;
m_RecomputeCovarianceInterval = 1;
m_Counter = 0;
m_UseMeanEnergy = true;
m_UseNormals.clear();
m_UseXYZ.clear();
num_dims = 0;
num_samples = 0;
m_PointsUpdate = std::make_shared<vnl_matrix_type>(10, 10);
m_InverseCovMatrix = std::make_shared<Eigen::MatrixXd>(10, 10);
m_points_mean = std::make_shared<vnl_matrix_type>(10, 10);
}
virtual ~CorrespondenceFunction() {}
void operator=(const CorrespondenceFunction&);
CorrespondenceFunction(const CorrespondenceFunction&);
typename ShapeDataType::Pointer m_ShapeData;
typename ShapeGradientType::Pointer m_ShapeGradient;
virtual void ComputeUpdates(const ParticleSystem* c);
std::shared_ptr<vnl_matrix_type> m_PointsUpdate;
double m_MinimumVariance;
double m_MinimumEigenValue;
// double m_MinimumVarianceBase;
bool m_HoldMinimumVariance;
int m_RecomputeCovarianceInterval;
double m_MinimumVarianceDecayConstant;
int m_Counter;
std::vector<double> m_AttributeScales; // size \sum_i n_i
int m_DomainsPerShape;
std::vector<int> m_AttributesPerDomain; // n
double m_CurrentEnergy;
bool m_UseMeanEnergy;
std::vector<bool> m_UseXYZ;
std::vector<bool> m_UseNormals;
std::shared_ptr<vnl_matrix_type> m_points_mean;
std::shared_ptr<Eigen::MatrixXd> m_InverseCovMatrix;
int num_dims, num_samples;
};
} // namespace shapeworks
Updated on 2024-03-17 at 12:58:44 -0600