Shapeworks Studio  2.1
Shape analysis software suite
List of all members | Classes | Public Types | Public Member Functions | Protected Attributes
Eigen::IncompleteLUT< _Scalar > Class Template Reference

Incomplete LU factorization with dual-threshold strategy. More...

#include <IncompleteLUT.h>

+ Inheritance diagram for Eigen::IncompleteLUT< _Scalar >:
+ Collaboration diagram for Eigen::IncompleteLUT< _Scalar >:

Classes

struct  keep_diag
 

Public Types

typedef Matrix< Scalar, Dynamic, Dynamic > MatrixType
 

Public Member Functions

template<typename MatrixType >
 IncompleteLUT (const MatrixType &mat, const RealScalar &droptol=NumTraits< Scalar >::dummy_precision(), int fillfactor=10)
 
Index rows () const
 
Index cols () const
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
template<typename MatrixType >
void analyzePattern (const MatrixType &amat)
 
template<typename MatrixType >
void factorize (const MatrixType &amat)
 
template<typename MatrixType >
IncompleteLUT< Scalar > & compute (const MatrixType &amat)
 
void setDroptol (const RealScalar &droptol)
 
void setFillfactor (int fillfactor)
 
template<typename Rhs , typename Dest >
void _solve (const Rhs &b, Dest &x) const
 
template<typename Rhs >
const internal::solve_retval< IncompleteLUT, Rhs > solve (const MatrixBase< Rhs > &b) const
 
template<typename _MatrixType >
void analyzePattern (const _MatrixType &amat)
 
template<typename _MatrixType >
void factorize (const _MatrixType &amat)
 

Protected Attributes

FactorType m_lu
 
RealScalar m_droptol
 
int m_fillfactor
 
bool m_analysisIsOk
 
bool m_factorizationIsOk
 
bool m_isInitialized
 
ComputationInfo m_info
 
PermutationMatrix< Dynamic, Dynamic, Index > m_P
 
PermutationMatrix< Dynamic, Dynamic, Index > m_Pinv
 

Detailed Description

template<typename _Scalar>
class Eigen::IncompleteLUT< _Scalar >

Incomplete LU factorization with dual-threshold strategy.

During the numerical factorization, two dropping rules are used : 1) any element whose magnitude is less than some tolerance is dropped. This tolerance is obtained by multiplying the input tolerance droptol by the average magnitude of all the original elements in the current row. 2) After the elimination of the row, only the fill largest elements in the L part and the fill largest elements in the U part are kept (in addition to the diagonal element ). Note that fill is computed from the input parameter fillfactor which is used the ratio to control the fill_in relatively to the initial number of nonzero elements.

The two extreme cases are when droptol=0 (to keep all the fill*2 largest elements) and when fill=n/2 with droptol being different to zero.

References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.

NOTE : The following implementation is derived from the ILUT implementation in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota released under the terms of the GNU LGPL: http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html alternatively, on GMANE: http://comments.gmane.org/gmane.comp.lib.eigen/3302

Definition at line 96 of file IncompleteLUT.h.

Member Function Documentation

template<typename _Scalar >
template<typename MatrixType >
IncompleteLUT<Scalar>& Eigen::IncompleteLUT< _Scalar >::compute ( const MatrixType amat)
inline

Compute an incomplete LU factorization with dual threshold on the matrix mat No pivoting is done in this version

Definition at line 149 of file IncompleteLUT.h.

150  {
151  analyzePattern(amat);
152  factorize(amat);
153  m_isInitialized = m_factorizationIsOk;
154  return *this;
155  }
template<typename _Scalar >
ComputationInfo Eigen::IncompleteLUT< _Scalar >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.

Definition at line 131 of file IncompleteLUT.h.

132  {
133  eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
134  return m_info;
135  }
template<typename Scalar >
void Eigen::IncompleteLUT< Scalar >::setDroptol ( const RealScalar &  droptol)

Set control parameter droptol

Parameters
droptolDrop any element whose magnitude is less than this tolerance

Definition at line 206 of file IncompleteLUT.h.

207 {
208  this->m_droptol = droptol;
209 }
template<typename Scalar >
void Eigen::IncompleteLUT< Scalar >::setFillfactor ( int  fillfactor)

Set control parameter fillfactor

Parameters
fillfactorThis is used to compute the number fill_in of largest elements to keep on each row.

Definition at line 216 of file IncompleteLUT.h.

217 {
218  this->m_fillfactor = fillfactor;
219 }

The documentation for this class was generated from the following file: