Shapeworks Studio  2.1
Shape analysis software suite
Enumerations
Enumerations

Enumerations

enum  {
  Eigen::Lower =0x1, Eigen::Upper =0x2, Eigen::UnitDiag =0x4, Eigen::ZeroDiag =0x8,
  Eigen::UnitLower =UnitDiag|Lower, Eigen::UnitUpper =UnitDiag|Upper, Eigen::StrictlyLower =ZeroDiag|Lower, Eigen::StrictlyUpper =ZeroDiag|Upper,
  Eigen::SelfAdjoint =0x10, Eigen::Symmetric =0x20
}
 
enum  { Eigen::Unaligned =0, Eigen::Aligned =1 }
 
enum  Eigen::CornerType { TopLeft, TopRight, BottomLeft, BottomRight }
 
enum  Eigen::DirectionType { Eigen::Vertical, Eigen::Horizontal, Eigen::BothDirections }
 
enum  { Eigen::ColMajor = 0, Eigen::RowMajor = 0x1, Eigen::AutoAlign = 0, Eigen::DontAlign = 0x2 }
 
enum  { Eigen::OnTheLeft = 1, Eigen::OnTheRight = 2 }
 
enum  Eigen::AccessorLevels { Eigen::ReadOnlyAccessors, Eigen::WriteAccessors, Eigen::DirectAccessors, Eigen::DirectWriteAccessors }
 
enum  Eigen::DecompositionOptions {
  Pivoting = 0x01, NoPivoting = 0x02, Eigen::ComputeFullU = 0x04, Eigen::ComputeThinU = 0x08,
  Eigen::ComputeFullV = 0x10, Eigen::ComputeThinV = 0x20, Eigen::EigenvaluesOnly = 0x40, Eigen::ComputeEigenvectors = 0x80,
  EigVecMask = EigenvaluesOnly | ComputeEigenvectors, Eigen::Ax_lBx = 0x100, Eigen::ABx_lx = 0x200, Eigen::BAx_lx = 0x400,
  GenEigMask = Ax_lBx | ABx_lx | BAx_lx
}
 
enum  Eigen::QRPreconditioners { Eigen::NoQRPreconditioner, Eigen::HouseholderQRPreconditioner, Eigen::ColPivHouseholderQRPreconditioner, Eigen::FullPivHouseholderQRPreconditioner }
 
enum  Eigen::ComputationInfo { Eigen::Success = 0, Eigen::NumericalIssue = 1, Eigen::NoConvergence = 2, Eigen::InvalidInput = 3 }
 
enum  Eigen::TransformTraits { Eigen::Isometry = 0x1, Eigen::Affine = 0x2, Eigen::AffineCompact = 0x10 | Affine, Eigen::Projective = 0x20 }
 

Detailed Description

Various enumerations used in Eigen. Many of these are used as template parameters.

Enumeration Type Documentation

anonymous enum

Enum containing possible values for the Mode parameter of MatrixBase::selfadjointView() and MatrixBase::triangularView().

Enumerator
Lower 

View matrix as a lower triangular matrix.

Upper 

View matrix as an upper triangular matrix.

UnitDiag 

Matrix has ones on the diagonal; to be used in combination with #Lower or #Upper.

ZeroDiag 

Matrix has zeros on the diagonal; to be used in combination with #Lower or #Upper.

UnitLower 

View matrix as a lower triangular matrix with ones on the diagonal.

UnitUpper 

View matrix as an upper triangular matrix with ones on the diagonal.

StrictlyLower 

View matrix as a lower triangular matrix with zeros on the diagonal.

StrictlyUpper 

View matrix as an upper triangular matrix with zeros on the diagonal.

SelfAdjoint 

Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint.

Symmetric 

Used to support symmetric, non-selfadjoint, complex matrices.

Definition at line 165 of file Constants.h.

anonymous enum

Enum for indicating whether an object is aligned or not.

Enumerator
Unaligned 

Object is not correctly aligned for vectorization.

Aligned 

Object is aligned for vectorization.

Definition at line 190 of file Constants.h.

190  {
192  Unaligned=0,
194  Aligned=1
195 };
anonymous enum

Enum containing possible values for the _Options template parameter of Matrix, Array and BandMatrix.

Enumerator
ColMajor 

Storage order is column major (see TopicStorageOrders).

RowMajor 

Storage order is row major (see TopicStorageOrders).

AutoAlign 

Align the matrix itself if it is vectorizable fixed-size

DontAlign 

Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned)

Definition at line 262 of file Constants.h.

262  {
264  ColMajor = 0,
266  RowMajor = 0x1, // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that
268  AutoAlign = 0, // FIXME --- clarify the situation
270  DontAlign = 0x2
271 };
anonymous enum

Enum for specifying whether to apply or solve on the left or right.

Enumerator
OnTheLeft 

Apply transformation on the left.

OnTheRight 

Apply transformation on the right.

Definition at line 275 of file Constants.h.

275  {
277  OnTheLeft = 1,
279  OnTheRight = 2
280 };

Used as template parameter in DenseCoeffBase and MapBase to indicate which accessors should be provided.

Enumerator
ReadOnlyAccessors 

Read-only access via a member function.

WriteAccessors 

Read/write access via member functions.

DirectAccessors 

Direct read-only access to the coefficients.

DirectWriteAccessors 

Direct read/write access to the coefficients.

Definition at line 308 of file Constants.h.

Enum for reporting the status of a computation.

Enumerator
Success 

Computation was successful.

NumericalIssue 

The provided data did not satisfy the prerequisites.

NoConvergence 

Iterative procedure did not converge.

InvalidInput 

The inputs are invalid, or the algorithm has been improperly called. When assertions are enabled, such errors trigger an assert.

Definition at line 374 of file Constants.h.

Enum used by DenseBase::corner() in Eigen2 compatibility mode.

Definition at line 201 of file Constants.h.

201 { TopLeft, TopRight, BottomLeft, BottomRight };

Enum with options to give to various decompositions.

Enumerator
ComputeFullU 

Used in JacobiSVD to indicate that the square matrix U is to be computed.

ComputeThinU 

Used in JacobiSVD to indicate that the thin matrix U is to be computed.

ComputeFullV 

Used in JacobiSVD to indicate that the square matrix V is to be computed.

ComputeThinV 

Used in JacobiSVD to indicate that the thin matrix V is to be computed.

EigenvaluesOnly 

Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that only the eigenvalues are to be computed and not the eigenvectors.

ComputeEigenvectors 

Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that both the eigenvalues and the eigenvectors are to be computed.

Ax_lBx 

Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem $ Ax = \lambda B x $.

ABx_lx 

Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem $ ABx = \lambda x $.

BAx_lx 

Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem $ BAx = \lambda x $.

Definition at line 321 of file Constants.h.

321  {
323  Pivoting = 0x01,
325  NoPivoting = 0x02,
327  ComputeFullU = 0x04,
329  ComputeThinU = 0x08,
331  ComputeFullV = 0x10,
333  ComputeThinV = 0x20,
336  EigenvaluesOnly = 0x40,
339  ComputeEigenvectors = 0x80,
341  EigVecMask = EigenvaluesOnly | ComputeEigenvectors,
344  Ax_lBx = 0x100,
347  ABx_lx = 0x200,
350  BAx_lx = 0x400,
352  GenEigMask = Ax_lBx | ABx_lx | BAx_lx
353 };

Enum containing possible values for the Direction parameter of Reverse, PartialReduxExpr and VectorwiseOp.

Enumerator
Vertical 

For Reverse, all columns are reversed; for PartialReduxExpr and VectorwiseOp, act on columns.

Horizontal 

For Reverse, all rows are reversed; for PartialReduxExpr and VectorwiseOp, act on rows.

BothDirections 

For Reverse, both rows and columns are reversed; not used for PartialReduxExpr and VectorwiseOp.

Definition at line 206 of file Constants.h.

Possible values for the QRPreconditioner template parameter of JacobiSVD.

Enumerator
NoQRPreconditioner 

Do not specify what is to be done if the SVD of a non-square matrix is asked for.

HouseholderQRPreconditioner 

Use a QR decomposition without pivoting as the first step.

ColPivHouseholderQRPreconditioner 

Use a QR decomposition with column pivoting as the first step.

FullPivHouseholderQRPreconditioner 

Use a QR decomposition with full pivoting as the first step.

Definition at line 357 of file Constants.h.

Enum used to specify how a particular transformation is stored in a matrix.

See also
Transform, Hyperplane::transform().
Enumerator
Isometry 

Transformation is an isometry.

Affine 

Transformation is an affine transformation stored as a (Dim+1)^2 matrix whose last row is assumed to be [0 ... 0 1].

AffineCompact 

Transformation is an affine transformation stored as a (Dim) x (Dim+1) matrix.

Projective 

Transformation is a general projective transformation stored as a (Dim+1)^2 matrix.

Definition at line 389 of file Constants.h.

389  {
391  Isometry = 0x1,
394  Affine = 0x2,
396  AffineCompact = 0x10 | Affine,
398  Projective = 0x20
399 };