Shapeworks Studio
2.1
Shape analysis software suite
|
A direct sparse Cholesky factorizations. More...
#include <SimplicialCholesky.h>
Classes | |
struct | keep_diag |
Public Types | |
enum | { UpLo = internal::traits<Derived>::UpLo } |
typedef internal::traits< Derived >::MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::RealScalar | RealScalar |
typedef MatrixType::Index | Index |
typedef SparseMatrix< Scalar, ColMajor, Index > | CholMatrixType |
typedef Matrix< Scalar, Dynamic, 1 > | VectorType |
Public Member Functions | |
SimplicialCholeskyBase () | |
SimplicialCholeskyBase (const MatrixType &matrix) | |
Derived & | derived () |
const Derived & | derived () const |
Index | cols () const |
Index | rows () const |
ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
template<typename Rhs > | |
const internal::solve_retval< SimplicialCholeskyBase, Rhs > | solve (const MatrixBase< Rhs > &b) const |
template<typename Rhs > | |
const internal::sparse_solve_retval< SimplicialCholeskyBase, Rhs > | solve (const SparseMatrixBase< Rhs > &b) const |
const PermutationMatrix< Dynamic, Dynamic, Index > & | permutationP () const |
const PermutationMatrix< Dynamic, Dynamic, Index > & | permutationPinv () const |
Derived & | setShift (const RealScalar &offset, const RealScalar &scale=1) |
template<typename Stream > | |
void | dumpMemory (Stream &s) |
template<typename Rhs , typename Dest > | |
void | _solve (const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const |
Protected Member Functions | |
template<bool DoLDLT> | |
void | compute (const MatrixType &matrix) |
template<bool DoLDLT> | |
void | factorize (const MatrixType &a) |
template<bool DoLDLT> | |
void | factorize_preordered (const CholMatrixType &a) |
void | analyzePattern (const MatrixType &a, bool doLDLT) |
void | analyzePattern_preordered (const CholMatrixType &a, bool doLDLT) |
void | ordering (const MatrixType &a, CholMatrixType &ap) |
Protected Attributes | |
ComputationInfo | m_info |
bool | m_isInitialized |
bool | m_factorizationIsOk |
bool | m_analysisIsOk |
CholMatrixType | m_matrix |
VectorType | m_diag |
VectorXi | m_parent |
VectorXi | m_nonZerosPerCol |
PermutationMatrix< Dynamic, Dynamic, Index > | m_P |
PermutationMatrix< Dynamic, Dynamic, Index > | m_Pinv |
RealScalar | m_shiftOffset |
RealScalar | m_shiftScale |
A direct sparse Cholesky factorizations.
These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are selfadjoint and positive definite. The factorization allows for solving A.X = B where X and B can be either dense or sparse.
In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization such that the factorized matrix is P A P^-1.
_MatrixType | the type of the sparse matrix A, it must be a SparseMatrix<> |
_UpLo | the triangular part that will be used for the computations. It can be Lower or Upper. Default is Lower. |
Definition at line 36 of file SimplicialCholesky.h.
|
inline |
|
inlineprotected |
Computes the sparse Cholesky decomposition of matrix
Definition at line 184 of file SimplicialCholesky.h.
|
inline |
Reports whether previous computation was successful.
Success
if computation was succesful, NumericalIssue
if the matrix.appears to be negative. Definition at line 75 of file SimplicialCholesky.h.
|
inline |
Definition at line 111 of file SimplicialCholesky.h.
|
inline |
Definition at line 116 of file SimplicialCholesky.h.
|
inline |
Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.
During the numerical factorization, the diagonal coefficients are transformed by the following linear model:
d_ii
= offset + scale * d_ii
The default is the identity transformation with offset=0, and scale=1.
*this
. Definition at line 128 of file SimplicialCholesky.h.
|
inline |
Definition at line 87 of file SimplicialCholesky.h.
|
inline |
Definition at line 101 of file SimplicialCholesky.h.