Shapeworks Studio  2.1
Shape analysis software suite
List of all members | Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | Friends
Eigen::HouseholderSequence< VectorsType, CoeffsType, Side > Class Template Reference

Sequence of Householder reflections acting on subspaces with decreasing size. More...

#include <HouseholderSequence.h>

+ Inheritance diagram for Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >:
+ Collaboration diagram for Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >:

Public Types

enum  { RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime }
 
typedef internal::traits< HouseholderSequence >::Scalar Scalar
 
typedef VectorsType::Index Index
 
typedef HouseholderSequence< typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename VectorsType::ConjugateReturnType >::type, VectorsType >::type, typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename CoeffsType::ConjugateReturnType >::type, CoeffsType >::type, Side > ConjugateReturnType
 
- Public Types inherited from Eigen::EigenBase< HouseholderSequence< VectorsType, CoeffsType, Side > >
typedef internal::traits< HouseholderSequence< VectorsType, CoeffsType, Side > >::StorageKind StorageKind
 
typedef internal::traits< HouseholderSequence< VectorsType, CoeffsType, Side > >::Index Index
 

Public Member Functions

 HouseholderSequence (const VectorsType &v, const CoeffsType &h)
 Constructor. More...
 
 HouseholderSequence (const HouseholderSequence &other)
 Copy constructor.
 
Index rows () const
 Number of rows of transformation viewed as a matrix. More...
 
Index cols () const
 Number of columns of transformation viewed as a matrix. More...
 
const EssentialVectorType essentialVector (Index k) const
 Essential part of a Householder vector. More...
 
HouseholderSequence transpose () const
 Transpose of the Householder sequence.
 
ConjugateReturnType conjugate () const
 Complex conjugate of the Householder sequence.
 
ConjugateReturnType adjoint () const
 Adjoint (conjugate transpose) of the Householder sequence.
 
ConjugateReturnType inverse () const
 Inverse of the Householder sequence (equals the adjoint).
 
template<typename DestType >
void evalTo (DestType &dst) const
 
template<typename Dest , typename Workspace >
void evalTo (Dest &dst, Workspace &workspace) const
 
template<typename Dest >
void applyThisOnTheRight (Dest &dst) const
 
template<typename Dest , typename Workspace >
void applyThisOnTheRight (Dest &dst, Workspace &workspace) const
 
template<typename Dest >
void applyThisOnTheLeft (Dest &dst) const
 
template<typename Dest , typename Workspace >
void applyThisOnTheLeft (Dest &dst, Workspace &workspace) const
 
template<typename OtherDerived >
internal::matrix_type_times_scalar_type< Scalar, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other) const
 Computes the product of a Householder sequence with a matrix. More...
 
HouseholderSequencesetLength (Index length)
 Sets the length of the Householder sequence. More...
 
HouseholderSequencesetShift (Index shift)
 Sets the shift of the Householder sequence. More...
 
Index length () const
 Returns the length of the Householder sequence.
 
Index shift () const
 Returns the shift of the Householder sequence.
 
- Public Member Functions inherited from Eigen::EigenBase< HouseholderSequence< VectorsType, CoeffsType, Side > >
HouseholderSequence< VectorsType, CoeffsType, Side > & derived ()
 
const HouseholderSequence< VectorsType, CoeffsType, Side > & derived () const
 
HouseholderSequence< VectorsType, CoeffsType, Side > & const_cast_derived () const
 
const HouseholderSequence< VectorsType, CoeffsType, Side > & const_derived () const
 
Index rows () const
 
Index cols () const
 
Index size () const
 
void evalTo (Dest &dst) const
 
void addTo (Dest &dst) const
 
void subTo (Dest &dst) const
 
void applyThisOnTheRight (Dest &dst) const
 
void applyThisOnTheLeft (Dest &dst) const
 

Protected Member Functions

HouseholderSequencesetTrans (bool trans)
 Sets the transpose flag. More...
 
bool trans () const
 Returns the transpose flag.
 

Protected Attributes

VectorsType::Nested m_vectors
 
CoeffsType::Nested m_coeffs
 
bool m_trans
 
Index m_length
 
Index m_shift
 

Friends

template<typename _VectorsType , typename _CoeffsType , int _Side>
struct internal::hseq_side_dependent_impl
 
template<typename VectorsType2 , typename CoeffsType2 , int Side2>
class HouseholderSequence
 

Detailed Description

template<typename VectorsType, typename CoeffsType, int Side>
class Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >

Sequence of Householder reflections acting on subspaces with decreasing size.

Template Parameters
VectorsTypetype of matrix containing the Householder vectors
CoeffsTypetype of vector containing the Householder coefficients
Sideeither OnTheLeft (the default) or OnTheRight

This class represents a product sequence of Householder reflections where the first Householder reflection acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), and ColPivHouseholderQR::householderQ() all return a HouseholderSequence.

More precisely, the class HouseholderSequence represents an $ n \times n $ matrix $ H $ of the form $ H = \prod_{i=0}^{n-1} H_i $ where the i-th Householder reflection is $ H_i = I - h_i v_i v_i^* $. The i-th Householder coefficient $ h_i $ is a scalar and the i-th Householder vector $ v_i $ is a vector of the form

\[ v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. \]

The last $ n-i $ entries of $ v_i $ are called the essential part of the Householder vector.

Typical usages are listed below, where H is a HouseholderSequence:

A.applyOnTheRight(H); // A = A * H
A.applyOnTheLeft(H); // A = H * A
A.applyOnTheRight(H.adjoint()); // A = A * H^*
A.applyOnTheLeft(H.adjoint()); // A = H^* * A
MatrixXd Q = H; // conversion to a dense matrix

In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.

See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.

See also
MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Definition at line 227 of file ForwardDeclarations.h.

Constructor & Destructor Documentation

template<typename VectorsType, typename CoeffsType, int Side>
Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::HouseholderSequence ( const VectorsType &  v,
const CoeffsType &  h 
)
inline

Constructor.

Parameters
[in]vMatrix containing the essential parts of the Householder vectors
[in]hVector containing the Householder coefficients

Constructs the Householder sequence with coefficients given by h and vectors given by v. The i-th Householder coefficient $ h_i $ is given by h(i) and the essential part of the i-th Householder vector $ v_i $ is given by v(k,i) with k > i (the subdiagonal part of the i-th column). If v has fewer columns than rows, then the Householder sequence contains as many Householder reflections as there are columns.

Note
The HouseholderSequence object stores v and h by reference.

Example:

Output:

See also
setLength(), setShift()

Definition at line 154 of file HouseholderSequence.h.

155  : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
156  m_shift(0)
157  {
158  }

Member Function Documentation

template<typename VectorsType, typename CoeffsType, int Side>
Index Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::cols ( void  ) const
inline

Number of columns of transformation viewed as a matrix.

Returns
Number of columns

This equals the dimension of the space that the transformation acts on.

Definition at line 180 of file HouseholderSequence.h.

180 { return rows(); }
Index rows() const
Number of rows of transformation viewed as a matrix.
template<typename VectorsType, typename CoeffsType, int Side>
const EssentialVectorType Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::essentialVector ( Index  k) const
inline

Essential part of a Householder vector.

Parameters
[in]kIndex of Householder reflection
Returns
Vector containing non-trivial entries of k-th Householder vector

This function returns the essential part of the Householder vector $ v_i $. This is a vector of length $ n-i $ containing the last $ n-i $ entries of the vector

\[ v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. \]

The index $ i $ equals k + shift(), corresponding to the k-th column of the matrix v passed to the constructor.

See also
setShift(), shift()

Definition at line 196 of file HouseholderSequence.h.

197  {
198  eigen_assert(k >= 0 && k < m_length);
199  return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
200  }
template<typename VectorsType, typename CoeffsType, int Side>
template<typename OtherDerived >
internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::operator* ( const MatrixBase< OtherDerived > &  other) const
inline

Computes the product of a Householder sequence with a matrix.

Parameters
[in]otherMatrix being multiplied.
Returns
Expression object representing the product.

This function computes $ HM $ where $ H $ is the Householder sequence represented by *this and $ M $ is the matrix other.

Definition at line 327 of file HouseholderSequence.h.

328  {
329  typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
330  res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
331  applyThisOnTheLeft(res);
332  return res;
333  }
template<typename VectorsType, typename CoeffsType, int Side>
Index Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::rows ( void  ) const
inline

Number of rows of transformation viewed as a matrix.

Returns
Number of rows

This equals the dimension of the space that the transformation acts on.

Definition at line 174 of file HouseholderSequence.h.

174 { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
template<typename VectorsType, typename CoeffsType, int Side>
HouseholderSequence& Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::setLength ( Index  length)
inline

Sets the length of the Householder sequence.

Parameters
[in]lengthNew value for the length.

By default, the length $ n $ of the Householder sequence $ H = H_0 H_1 \ldots H_{n-1} $ is set to the number of columns of the matrix v passed to the constructor, or the number of rows if that is smaller. After this function is called, the length equals length.

See also
length()

Definition at line 346 of file HouseholderSequence.h.

347  {
348  m_length = length;
349  return *this;
350  }
Index length() const
Returns the length of the Householder sequence.
template<typename VectorsType, typename CoeffsType, int Side>
HouseholderSequence& Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::setShift ( Index  shift)
inline

Sets the shift of the Householder sequence.

Parameters
[in]shiftNew value for the shift.

By default, a HouseholderSequence object represents $ H = H_0 H_1 \ldots H_{n-1} $ and the i-th column of the matrix v passed to the constructor corresponds to the i-th Householder reflection. After this function is called, the object represents $ H = H_{\mathrm{shift}} H_{\mathrm{shift}+1} \ldots H_{n-1} $ and the i-th column of v corresponds to the (shift+i)-th Householder reflection.

See also
shift()

Definition at line 363 of file HouseholderSequence.h.

364  {
365  m_shift = shift;
366  return *this;
367  }
Index shift() const
Returns the shift of the Householder sequence.
template<typename VectorsType, typename CoeffsType, int Side>
HouseholderSequence& Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::setTrans ( bool  trans)
inlineprotected

Sets the transpose flag.

Parameters
[in]transNew value of the transpose flag.

By default, the transpose flag is not set. If the transpose flag is set, then this object represents $ H^T = H_{n-1}^T \ldots H_1^T H_0^T $ instead of $ H = H_0 H_1 \ldots H_{n-1} $.

See also
trans()

Definition at line 385 of file HouseholderSequence.h.

386  {
387  m_trans = trans;
388  return *this;
389  }
bool trans() const
Returns the transpose flag.

The documentation for this class was generated from the following files: