Shapeworks Studio
2.1
Shape analysis software suite
|
A conjugate gradient solver for sparse self-adjoint problems. More...
#include <ConjugateGradient.h>
Public Types | |
enum | { UpLo = _UpLo } |
typedef _MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::Index | Index |
typedef MatrixType::RealScalar | RealScalar |
typedef _Preconditioner | Preconditioner |
Public Types inherited from Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
typedef internal::traits< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::MatrixType | MatrixType |
typedef internal::traits< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::Preconditioner | Preconditioner |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::Index | Index |
typedef MatrixType::RealScalar | RealScalar |
Public Member Functions | |
ConjugateGradient () | |
ConjugateGradient (const MatrixType &A) | |
template<typename Rhs , typename Guess > | |
const internal::solve_retval_with_guess< ConjugateGradient, Rhs, Guess > | solveWithGuess (const MatrixBase< Rhs > &b, const Guess &x0) const |
template<typename Rhs , typename Dest > | |
void | _solveWithGuess (const Rhs &b, Dest &x) const |
template<typename Rhs , typename Dest > | |
void | _solve (const Rhs &b, Dest &x) const |
Public Member Functions inherited from Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | derived () |
const ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | derived () const |
IterativeSolverBase () | |
IterativeSolverBase (const MatrixType &A) | |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | analyzePattern (const MatrixType &A) |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | factorize (const MatrixType &A) |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | compute (const MatrixType &A) |
Index | rows () const |
Index | cols () const |
RealScalar | tolerance () const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | setTolerance (const RealScalar &tolerance) |
Preconditioner & | preconditioner () |
const Preconditioner & | preconditioner () const |
int | maxIterations () const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | setMaxIterations (int maxIters) |
int | iterations () const |
RealScalar | error () const |
const internal::solve_retval< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
const internal::sparse_solve_retval< IterativeSolverBase, Rhs > | solve (const SparseMatrixBase< Rhs > &b) const |
ComputationInfo | info () const |
void | _solve_sparse (const Rhs &b, SparseMatrix< DestScalar, DestOptions, DestIndex > &dest) const |
Additional Inherited Members | |
Protected Member Functions inherited from Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
void | init () |
Protected Attributes inherited from Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
const MatrixType * | mp_matrix |
Preconditioner | m_preconditioner |
int | m_maxIterations |
RealScalar | m_tolerance |
RealScalar | m_error |
int | m_iterations |
ComputationInfo | m_info |
bool | m_isInitialized |
bool | m_analysisIsOk |
bool | m_factorizationIsOk |
A conjugate gradient solver for sparse self-adjoint problems.
This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm. The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
_MatrixType | the type of the sparse matrix A, can be a dense or a sparse matrix. |
_UpLo | the triangular part that will be used for the computations. It can be Lower or Upper. Default is Lower. |
_Preconditioner | the type of the preconditioner. Default is DiagonalPreconditioner |
The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.
This class can be used as the direct solver classes. Here is a typical usage example:
By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method. Here is a step by step execution example starting with a random guess and printing the evolution of the estimated error:
Definition at line 96 of file ConjugateGradient.h.
|
inline |
|
inline |
Initialize the solver with matrix A for further Ax=b
solving.
This constructor is a shortcut for the default constructor followed by a call to compute().
Definition at line 192 of file ConjugateGradient.h.
|
inline |
Definition at line 203 of file ConjugateGradient.h.