Shapeworks Studio
2.1
Shape analysis software suite
|
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...
#include <SparseSelfAdjointView.h>
Public Types | |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::Index | Index |
typedef Matrix< Index, Dynamic, 1 > | VectorI |
typedef MatrixType::Nested | MatrixTypeNested |
typedef internal::remove_all< MatrixTypeNested >::type | _MatrixTypeNested |
Public Types inherited from Eigen::EigenBase< SparseSelfAdjointView< MatrixType, UpLo > > | |
typedef internal::traits< SparseSelfAdjointView< MatrixType, UpLo > >::StorageKind | StorageKind |
typedef internal::traits< SparseSelfAdjointView< MatrixType, UpLo > >::Index | Index |
Public Member Functions | |
SparseSelfAdjointView (const MatrixType &matrix) | |
Index | rows () const |
Index | cols () const |
const _MatrixTypeNested & | matrix () const |
_MatrixTypeNested & | matrix () |
template<typename OtherDerived > | |
SparseSparseProduct< typename OtherDerived::PlainObject, OtherDerived > | operator* (const SparseMatrixBase< OtherDerived > &rhs) const |
template<typename OtherDerived > | |
SparseSelfAdjointTimeDenseProduct< MatrixType, OtherDerived, UpLo > | operator* (const MatrixBase< OtherDerived > &rhs) const |
template<typename DerivedU > | |
SparseSelfAdjointView & | rankUpdate (const SparseMatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1)) |
template<typename DestScalar , int StorageOrder> | |
void | evalTo (SparseMatrix< DestScalar, StorageOrder, Index > &_dest) const |
template<typename DestScalar > | |
void | evalTo (DynamicSparseMatrix< DestScalar, ColMajor, Index > &_dest) const |
SparseSymmetricPermutationProduct< _MatrixTypeNested, UpLo > | twistedBy (const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const |
template<typename SrcMatrixType , int SrcUpLo> | |
SparseSelfAdjointView & | operator= (const SparseSymmetricPermutationProduct< SrcMatrixType, SrcUpLo > &permutedMatrix) |
SparseSelfAdjointView & | operator= (const SparseSelfAdjointView &src) |
template<typename SrcMatrixType , unsigned int SrcUpLo> | |
SparseSelfAdjointView & | operator= (const SparseSelfAdjointView< SrcMatrixType, SrcUpLo > &src) |
template<typename DerivedU > | |
SparseSelfAdjointView< MatrixType, UpLo > & | rankUpdate (const SparseMatrixBase< DerivedU > &u, const Scalar &alpha) |
Public Member Functions inherited from Eigen::EigenBase< SparseSelfAdjointView< MatrixType, UpLo > > | |
SparseSelfAdjointView< MatrixType, UpLo > & | derived () |
const SparseSelfAdjointView< MatrixType, UpLo > & | derived () const |
SparseSelfAdjointView< MatrixType, UpLo > & | const_cast_derived () const |
const SparseSelfAdjointView< MatrixType, UpLo > & | const_derived () const |
Index | rows () const |
Index | cols () const |
Index | size () const |
void | evalTo (Dest &dst) const |
void | addTo (Dest &dst) const |
void | subTo (Dest &dst) const |
void | applyThisOnTheRight (Dest &dst) const |
void | applyThisOnTheLeft (Dest &dst) const |
Protected Attributes | |
MatrixType::Nested | m_matrix |
VectorI | m_countPerRow |
VectorI | m_countPerCol |
Friends | |
template<typename OtherDerived > | |
SparseSparseProduct< OtherDerived, typename OtherDerived::PlainObject > | operator* (const SparseMatrixBase< OtherDerived > &lhs, const SparseSelfAdjointView &rhs) |
template<typename OtherDerived > | |
DenseTimeSparseSelfAdjointProduct< OtherDerived, MatrixType, UpLo > | operator* (const MatrixBase< OtherDerived > &lhs, const SparseSelfAdjointView &rhs) |
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
MatrixType | the type of the dense matrix storing the coefficients |
UpLo | can be either #Lower or #Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
Definition at line 49 of file SparseSelfAdjointView.h.
|
inline |
*this
and a sparse matrix rhs.Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
Definition at line 79 of file SparseSelfAdjointView.h.
|
inline |
Efficient sparse self-adjoint matrix times dense vector/matrix product
Definition at line 99 of file SparseSelfAdjointView.h.
SparseSelfAdjointView& Eigen::SparseSelfAdjointView< MatrixType, UpLo >::rankUpdate | ( | const SparseMatrixBase< DerivedU > & | u, |
const Scalar & | alpha = Scalar(1) |
||
) |
Perform a symmetric rank K update of the selfadjoint matrix *this
: where u is a vector or matrix.
*this
To perform you can simply call this function with u.adjoint().
|
inline |
Definition at line 138 of file SparseSelfAdjointView.h.
|
friend |
Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
Definition at line 91 of file SparseSelfAdjointView.h.
|
friend |
Efficient dense vector/matrix times sparse self-adjoint matrix product
Definition at line 107 of file SparseSelfAdjointView.h.