Shapeworks Studio
2.1
Shape analysis software suite
|
#include <MetisSupport.h>
Public Types | |
typedef PermutationMatrix< Dynamic, Dynamic, Index > | PermutationType |
typedef Matrix< Index, Dynamic, 1 > | IndexVector |
Public Member Functions | |
template<typename MatrixType > | |
void | get_symmetrized_graph (const MatrixType &A) |
template<typename MatrixType > | |
void | operator() (const MatrixType &A, PermutationType &matperm) |
Protected Attributes | |
IndexVector | m_indexPtr |
IndexVector | m_innerIndices |
Get the fill-reducing ordering from the METIS package
If A is the original matrix and Ap is the permuted matrix, the fill-reducing permutation is defined as follows : Row (column) i of A is the matperm(i) row (column) of Ap. WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm)
Definition at line 22 of file MetisSupport.h.