Skip to content

Libs/Optimize/ParticleSystem/itkParticleShapeMixedEffectsMatrixAttribute.h

Namespaces

Name
itk

Classes

Name
class itk::ParticleShapeMixedEffectsMatrixAttribute

Source code

/* Class for Mixed-effects regression */

#ifndef __itkParticleShapeMixedEffectsMatrixAttribute_h
#define __itkParticleShapeMixedEffectsMatrixAttribute_h

#include "itkParticleShapeMatrixAttribute.h"
#include "vnl/vnl_vector.h"
#include "itkParticleSystem.h"
#include "vnl/vnl_trace.h"

namespace itk
{
template <class T, unsigned int VDimension>
class ITK_EXPORT ParticleShapeMixedEffectsMatrixAttribute
  : public ParticleShapeMatrixAttribute<T,VDimension>
{
public:
  typedef T DataType;
  typedef ParticleShapeMixedEffectsMatrixAttribute Self;
  typedef ParticleShapeMatrixAttribute<T,VDimension> Superclass;
  typedef SmartPointer<Self>  Pointer;
  typedef SmartPointer<const Self>  ConstPointer;
  typedef WeakPointer<const Self>  ConstWeakPointer;

  itkNewMacro(Self);

  itkTypeMacro(ParticleShapeMixedEffectsMatrixAttribute, ParticleShapeMatrixAttribute);


  void UpdateMeanMatrix()
  {
    // for each sample
    vnl_vector<double> tempvect;
    tempvect.set_size(m_MeanMatrix.rows());
    tempvect.fill(0.0);
    for (unsigned int i = 0; i < m_MeanMatrix.cols(); i++)
      {
        int group_indx = i / m_TimeptsPerIndividual;
        tempvect = m_Intercept + m_Slope * m_Expl(i);
        tempvect = tempvect + m_InterceptRand.get_row(group_indx);
          tempvect = tempvect + m_SlopeRand.get_row(group_indx) * m_Expl(i);
      // compute the mean
          m_MeanMatrix.set_column(i, tempvect);
      }
  }

  inline vnl_vector<double> ComputeMean(double k) const
  {
    return m_Intercept + m_Slope * k;    
  }

  void ResizeParameters(unsigned int n)
  {
    vnl_vector<double> tmpA = m_Intercept; // copy existing  matrix
    vnl_vector<double> tmpB = m_Slope; // copy existing  matrix

    // Create new 
    m_Intercept.set_size(n);
    m_Slope.set_size(n);

    // Copy old data into new vector.
    for (unsigned int r = 0; r < tmpA.size(); r++)
      {
      m_Intercept(r) = tmpA(r);
      m_Slope(r) = tmpB(r);
      }
  }

  virtual void ResizeMeanMatrix(int rs, int cs)
  {
    vnl_matrix<T> tmp = m_MeanMatrix; // copy existing  matrix

    // Create new column (shape)
    m_MeanMatrix.set_size(rs, cs);

    m_MeanMatrix.fill(0.0);

    // Copy old data into new matrix.
    for (unsigned int c = 0; c < tmp.cols(); c++)
      {
      for (unsigned int r = 0; r < tmp.rows(); r++)
        {
        m_MeanMatrix(r,c) = tmp(r,c);
        }
      } 
  }

  void ResizeExplanatory(unsigned int n)
  {
    if (n > m_Expl.size())
      {
      vnl_vector<double> tmp = m_Expl; // copy existing  matrix

      // Create new 
      m_Expl.set_size(n);
      m_Expl.fill(0.0);

      // Copy old data into new vector.
      for (unsigned int r = 0; r < tmp.size(); r++)
        {
        m_Expl(r) = tmp(r);
        }
      }
  }  

  virtual void DomainAddEventCallback(Object *, const EventObject &e)
  {
    const itk::ParticleDomainAddEvent &event
      = dynamic_cast<const itk::ParticleDomainAddEvent &>(e);
    unsigned int d = event.GetDomainIndex();

    if ( d % this->m_DomainsPerShape  == 0 )
      {
      this->ResizeMatrix(this->rows(), this->cols()+1);
      this->ResizeMeanMatrix(this->rows(), this->cols()+1);
      this->ResizeExplanatory(this->cols());
      }    
  }

  virtual void PositionAddEventCallback(Object *o, const EventObject &e) 
  {
    const itk::ParticlePositionAddEvent &event
      = dynamic_cast<const itk::ParticlePositionAddEvent &>(e);
    const itk::ParticleSystem *ps
      = dynamic_cast<const itk::ParticleSystem *>(o);
    const int d = event.GetDomainIndex();
    const unsigned int idx = event.GetPositionIndex();
    const typename itk::ParticleSystem::PointType pos
      = ps->GetTransformedPosition(idx, d);

    const unsigned int PointsPerDomain = ps ->GetNumberOfParticles(d);

    // Make sure we have enough rows.
    if ( (ps->GetNumberOfParticles(d) * VDimension * this->m_DomainsPerShape) > this->rows() )
      {
      this->ResizeParameters(PointsPerDomain * VDimension * this->m_DomainsPerShape);
      this->ResizeMatrix(PointsPerDomain * VDimension * this->m_DomainsPerShape,
                         this->cols());
      this->ResizeMeanMatrix(PointsPerDomain * VDimension * this->m_DomainsPerShape,
                             this->cols());
      }

    // CANNOT ADD POSITION INFO UNTIL ALL POINTS PER DOMAIN IS KNOWN
    // Add position info to the matrix
    unsigned int k = ((d % this->m_DomainsPerShape) * PointsPerDomain * VDimension)
      + (idx * VDimension);
    for (unsigned int i = 0; i < VDimension; i++)
      {
      this->operator()(i+k, d / this->m_DomainsPerShape) = pos[i];
      }

    //   std::cout << "Row " << k << " Col " << d / this->m_DomainsPerShape << " = " << pos << std::endl;
  }

  virtual void PositionSetEventCallback(Object *o, const EventObject &e) 
  {
    const itk::ParticlePositionSetEvent &event
      = dynamic_cast <const itk::ParticlePositionSetEvent &>(e);

    const itk::ParticleSystem *ps
      = dynamic_cast<const itk::ParticleSystem *>(o);
    const int d = event.GetDomainIndex();
    const unsigned int idx = event.GetPositionIndex();
    const typename itk::ParticleSystem::PointType pos = ps->GetTransformedPosition(idx, d);
    const unsigned int PointsPerDomain = ps ->GetNumberOfParticles(d);

    // Modify matrix info
    //    unsigned int k = VDimension * idx;
    unsigned int k = ((d % this->m_DomainsPerShape) * PointsPerDomain * VDimension)
      + (idx * VDimension);    

    for (unsigned int i = 0; i < VDimension; i++)
      {
      this->operator()(i+k, d / this->m_DomainsPerShape) =
        pos[i] - m_MeanMatrix(i+k, d/ this->m_DomainsPerShape);
      }
  }

  virtual void PositionRemoveEventCallback(Object *, const EventObject &) 
  {
    // NEED TO IMPLEMENT THIS
  }

  void SetDomainsPerShape(int i)
  { this->m_DomainsPerShape = i; }
  int GetDomainsPerShape() const
  { return this->m_DomainsPerShape; }

  void SetTimeptsPerIndividual(int i)
  {
    this->m_TimeptsPerIndividual = i;
  }

  int GetTimeptsPerIndividual() const
  {
    return this->m_TimeptsPerIndividual;
  }

  void SetExplanatory(std::vector<double> v)
  {
    //    std::cout << "Setting expl " << std::endl;
    ResizeExplanatory(v.size());
    for (unsigned int i = 0; i < v.size(); i++)
      {
      //      std::cout << v[i] << std::endl;
      m_Expl[i] = v[i];
      }
  }
  void SetExplanatory(unsigned int i, double q)
  { m_Expl[i] = q; }
  const double &GetExplanatory(unsigned int i) const
  { return m_Expl[i]; }
  double &GetExplanatory(unsigned int i)
  { return m_Expl[i]; }

  const vnl_vector<double> &GetSlope() const
  { return m_Slope; }
  const vnl_vector<double> &GetIntercept() const
  { return m_Intercept; }
  const vnl_matrix<double> &GetSlopeRandom() const
  { return m_SlopeRand; }
  const vnl_matrix<double> &GetInterceptRandom() const
  { return m_InterceptRand; }



  void SetSlope(const std::vector<double> &v)
  {
    ResizeParameters(v.size());
    for (unsigned int i = 0; i < v.size(); i++)
      {
      m_Slope[i] = v[i];
      }    
  }

  void SetIntercept(const std::vector<double> &v)
  {
    ResizeParameters(v.size());
    for (unsigned int i = 0; i < v.size(); i++)
      {
      m_Intercept[i] = v[i];
      }

  }

  void EstimateParameters()
  {
    //    std::cout << "Estimating params" << std::endl;
    //    std::cout << "Explanatory: " << m_Expl << std::endl;

    vnl_matrix<double> X = *this + m_MeanMatrix;

    // Number of samples
    int num_shapes = static_cast<double>(X.cols());
    this->m_NumIndividuals = num_shapes / this->GetTimeptsPerIndividual();
    int nr = X.rows(); //number of points*3

    //set the sizes of random slope and intercept matrix
    m_SlopeRand.set_size(m_NumIndividuals, nr); //num_groups X num_points*3
    m_InterceptRand.set_size(m_NumIndividuals, nr); //num_groups X num_points*3

    vnl_matrix<double> fixed; //slopes + intercepts for all points
    vnl_matrix<double> random; //slopes + intercepts for all groups, for all points
    fixed.set_size(2, nr);
    random.set_size(2, nr*m_NumIndividuals);
    vnl_matrix<double> Ds(2,2); //covariance matrix of random parameters (2x2)
    Ds.set_identity();  //initialize to identity
    double sigma2s = 1;  //variance of error
    vnl_matrix<double> identity_n;
    identity_n.set_size(m_TimeptsPerIndividual, m_TimeptsPerIndividual);
    identity_n.set_identity();
    vnl_matrix<double> identity_2;
    identity_2.set_size(2,2);
    identity_2.set_identity();
    vnl_matrix<double> *Ws=NULL, *Vs=NULL;
    Ws = new vnl_matrix<double>[m_NumIndividuals];
    Vs = new vnl_matrix<double>[m_NumIndividuals];
    for (int i = 0; i < m_NumIndividuals; i++)
    {
        Vs[i].set_size(m_TimeptsPerIndividual, m_TimeptsPerIndividual); 
        Ws[i].set_size(m_TimeptsPerIndividual, m_TimeptsPerIndividual);
    }

    vnl_matrix<double> sum_mat1(2,2,0);
    vnl_vector<double> sum_mat2(2); sum_mat2.fill(0.0);
    vnl_vector<double> residual; residual.set_size(m_TimeptsPerIndividual); residual.fill(0.0);
    double ecorr = 0.0;
    double tracevar = 0.0;
    vnl_matrix<double> bscorr(2,2,0.0); 
    vnl_matrix<double> bsvar(2,2,0.0);
    vnl_matrix<double> Xp; Xp.set_size(m_TimeptsPerIndividual, 2);
    vnl_vector<double> y; y.set_size(m_TimeptsPerIndividual);
    vnl_vector<double> tempvect; tempvect.set_size(2);
    for (int i = 0; i < nr; i++) //for all points (x,y,z coordinates)
    {
        sigma2s = 1.0;
        Ds.set_identity();
        for (int j = 0; j < 50; j++) //EM iterations
        {
            sum_mat1.fill(0.0); sum_mat2.fill(0.0);
            residual.fill(0.0);
            ecorr = 0.0; 
            tracevar = 0.0;
            bscorr.fill(0.0);
            bsvar.fill(0.0);
            for (int k = 0; k < m_NumIndividuals; k++)
            {
                for (int l = 0; l < m_TimeptsPerIndividual; l++)
                {
                    Xp(l,0) = m_Expl(k*m_TimeptsPerIndividual + l);
                    Xp(l,1) = 1;
                    y(l) = X(i, k*m_TimeptsPerIndividual + l);
                }
                Vs[k] = (identity_n * sigma2s) + Xp * Ds * vnl_transpose(Xp);
                //Ws = static_cast<vnl_matrix> (vnl_matrix_inverse<double>(Vs));
                Ws[k] = vnl_inverse(Vs[k]);
                sum_mat1 = sum_mat1 + vnl_transpose(Xp) * Ws[k] * Xp;
                sum_mat2 = sum_mat2 + vnl_transpose(Xp) * Ws[k] * y;
            }
            tempvect = vnl_inverse(sum_mat1) * sum_mat2; 
            fixed.set_column(i, tempvect);
            for (int k = 0; k < m_NumIndividuals; k++)
            {
                for (int l = 0; l < m_TimeptsPerIndividual; l++)
                {
                    Xp(l,0) = m_Expl(k*m_TimeptsPerIndividual + l);
                    Xp(l,1) = 1;
                    y(l) = X(i, k*m_TimeptsPerIndividual + l);
                }
                tempvect = Ds * vnl_transpose(Xp) * Ws[k] * (y - (Xp * fixed.get_column(i)));
                random.set_column(i*m_NumIndividuals + k, tempvect);
                residual = y - (Xp * fixed.get_column(i)) - (Xp * random.get_column(i*m_NumIndividuals + k));
                ecorr = ecorr + dot_product(residual, residual);
                tracevar = tracevar + (m_TimeptsPerIndividual - sigma2s * vnl_trace(Ws[k]));
                bscorr = bscorr + outer_product(random.get_column(i*m_NumIndividuals + k), random.get_column(i*m_NumIndividuals + k));
                bsvar = bsvar + (identity_2 - (vnl_transpose(Xp) * Ws[k] * Xp * Ds));
            }
            sigma2s = (ecorr + sigma2s * tracevar) / (num_shapes);
            Ds = (bscorr + Ds * bsvar) / m_NumIndividuals;
        }//endfor EM iterations
        //printf ("point #%d\n", i);
    }//endfor all points on shape (x,y & z)

    m_Slope = fixed.get_row(0);
    m_Intercept = fixed.get_row(1);
    for (int i = 0; i < m_NumIndividuals; i++)
    {
        for (int j = 0; j < nr; j++) //for all points * 3
        {
            m_SlopeRand(i,j) = random(0, j*m_NumIndividuals+i);
            m_InterceptRand(i,j) = random(1, j*m_NumIndividuals+i);
        }
    }
    delete [] Vs;
    delete [] Ws;
    //printf ("points:\n");
    //for (int k = 0; k < m_NumIndividuals; k++)
    //  for (int l = 0; l < m_TimeptsPerIndividual; l++)
    //      printf ("%g   %g\n", X(0,k*m_TimeptsPerIndividual + l), m_Expl(k*m_TimeptsPerIndividual + l));

    //printf ("fixed: slope %g, intercept %g", m_Slope(0), m_Intercept(0));
    //printf ("random: slopes %g %g, intercepts %g %g", m_SlopeRand(0,0), m_SlopeRand(1,0), m_InterceptRand(0,0), m_InterceptRand(1,0));

  }

  // 
  void Initialize()
  {
      m_Intercept.fill(0.0);
    m_Slope.fill(0.0);
    m_MeanMatrix.fill(0.0);

    m_SlopeRand.fill(0.0);
    m_InterceptRand.fill(0.0);    
  }

  virtual void BeforeIteration()
  {
    m_UpdateCounter ++;
    if (m_UpdateCounter >= m_RegressionInterval)
      {
      m_UpdateCounter = 0;
      this->EstimateParameters();
      this->UpdateMeanMatrix();
      }
  }

  void SetRegressionInterval( int i)
  {    m_RegressionInterval = i;  }
  int GetRegressionInterval() const
  { return m_RegressionInterval; }

protected:
  ParticleShapeMixedEffectsMatrixAttribute() 
  {
    this->m_DefinedCallbacks.DomainAddEvent = true;
    this->m_DefinedCallbacks.PositionAddEvent = true;
    this->m_DefinedCallbacks.PositionSetEvent = true;
    this->m_DefinedCallbacks.PositionRemoveEvent = true;
    m_UpdateCounter = 0;
    m_RegressionInterval = 1;
      m_NumIndividuals = 13;
      m_TimeptsPerIndividual = 3;
  }
  virtual ~ParticleShapeMixedEffectsMatrixAttribute() {};

  void PrintSelf(std::ostream& os, Indent indent) const
  { Superclass::PrintSelf(os,indent);  }

private:
  ParticleShapeMixedEffectsMatrixAttribute(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  int m_UpdateCounter;
  int m_RegressionInterval;

  // Parameters for the linear model
  vnl_vector<double> m_Intercept;
  vnl_vector<double> m_Slope;

  // The explanatory variable value for each sample (matrix column)
  vnl_vector<double> m_Expl;

  // A matrix to store the mean estimated for each explanatory variable (each sample)
  vnl_matrix<double> m_MeanMatrix;

  vnl_matrix<double> m_InterceptRand; //added: AK , random intercepts for each group
  vnl_matrix<double> m_SlopeRand; //added: AK , random slopes for each group
  int m_NumIndividuals;
  int m_TimeptsPerIndividual;
};

} // end namespace

#endif

Updated on 2022-07-23 at 17:50:04 -0600